Next generation clinical imaging of bone with XtremeCT II

SL Manske, Y Zhu, B Jorgenson, A Kroker, SK Boyd
McCaig Institute for Bone & Joint Health and Department of Radiology,
University of Calgary, Calgary, Canada
Next Generation HR-pQCT
Second Generation HR-pQCT

<table>
<thead>
<tr>
<th>Feature</th>
<th>1<sup>st</sup> Generation</th>
<th>2<sup>nd</sup> Generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field of view</td>
<td>Wider</td>
<td>12.6 cm</td>
</tr>
<tr>
<td>Gantry length</td>
<td>Longer</td>
<td>0.93 m</td>
</tr>
<tr>
<td>Scan time @ Std Acquisition</td>
<td>Faster</td>
<td>2.8 min</td>
</tr>
<tr>
<td>Radiation Dose @ Std Acquisition</td>
<td>≈ Dose</td>
<td>5 μSv</td>
</tr>
<tr>
<td>Voxel size @ Std Acquisition</td>
<td>Improved Resolution</td>
<td>82.0 μm</td>
</tr>
<tr>
<td>Minimum voxel size</td>
<td></td>
<td>45.0 μm</td>
</tr>
</tbody>
</table>
Spatial Resolution

A) XCTIM @82.0 µm
B) XCTII @60.7 µm
C) HR @30.3 µm

10% MTF Resolution = 141.4 µm
95.1 µm
55.9 µm
Standard Scan Sites - Radius

1st Generation @ 82 μm 2nd Generation @ 61 μm
Can we accurately assess trabecular microarchitecture using 2nd generation HR-pQCT?

Gold Standard
(30 μm, 200 ms IT)

Standard Patient Acquisition
(61 μm, 43 ms IT)
XtremeCTII

\[
y = -0.021 + 1.2 \cdot x \\
\]
\[
x^2 = 0.99 \\
\]

XtremeCT

\[
y = -0.015 + 1.1 \cdot x \\
\]
\[
x^2 = 0.89 \\
\]
XtremeCTII

\[y = -0.19 + 1 \cdot x \]
\[r^2 = 0.93 \]

XtremeCT

\[y = -0.12 + 1.3 \cdot x \]
\[r^2 = 0.98 \]
XtremeCTII

\[y = 0.019 + 1.2 \cdot x \]

\[r^2 = 0.97 \]

XtremeCT

\[y = -0.056 + 0.83 \cdot x \]

\[r^2 = 0.33 \]
Graphs and Equations

XtremeCTII
- **Graph A**:
 - Equation: \(y = -0.21 + 1.4 \times x \)
 - \(r^2 = 0.98 \)

- **Graph C**:
 - Equation: \(y = -0.3 + 1.1 \times x \)
 - \(r^2 = 0.99 \)

XtremeCT
- **Graph B**:
 - Error (XCTII-HR)
 - Mean Tb.Sp (mm)
 - \(\bar{x} \pm 2s = 0.6 \)
 - \(\bar{x} = 0.2 \)
 - \(\bar{x} - 2s = -0.19 \)

- **Graph D**:
 - Error (XCTIM-HR)
 - Mean Tb.Sp (mm)
 - \(\bar{x} \pm 2s = -0.068 \)
 - \(\bar{x} = -0.2 \)
 - \(\bar{x} - 2s = -0.33 \)
Is microarchitecture linked to osteoarthritis?

- The sequence of events leading to joint degeneration after ACL injury is poorly understood.
- Subchondral bone changes may precede cartilage loss\(^1,2\).
- Derived trabecular microarchitecture abnormal in ACL deficient patients, in absence of joint space narrowing\(^3\).

Can we detect early signs of knee osteoarthritis using 3D assessment of trabecular microarchitecture in the second generation HR-pQCT?

\(^1\) Baker-LePain 2012 Bone; \(^2\) Frobell 2010 Arthritis Care Res; \(^3\) Buckland-Wright 2000 Ann Rheum Dis
Second Generation HR-pQCT

<table>
<thead>
<tr>
<th></th>
<th>1st Generation</th>
<th>2nd Generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field of view</td>
<td>Wider</td>
<td>12.6 cm</td>
</tr>
<tr>
<td>Gantry length</td>
<td>Longer</td>
<td>0.93 m</td>
</tr>
<tr>
<td>Voxel size @ Std Acquisition</td>
<td>Improved Resolution</td>
<td>82.0 μm</td>
</tr>
</tbody>
</table>
Cadaveric Testing

• ‘Standard’ settings produced poor image quality
 • 43 ms integration time
 • 900 projections/180°
 • 61 μm voxel size

• Increased integration time to 100 ms
 • Radiation dose 70 μSv for 6 cm scan
Leg Positioning in FOV

First

Current
In Vivo Knee Scanning

Acquired 2 separate scans:
- Integration time: 100 ms
- 900 projections/180 deg
- Voxel size: 61 μm
- Length: 3 cm/scan (overlapped)
- Scan time: ~ 12 min/scan
- Radiation dose: ~ 35 μSv/scan
Contralateral Leg Positioning
Scans were acquired over a 61.5 mm length using:

- 6 x 10.2 mm ‘stacks’ encompassing distal femur and proximal tibia (Figure 3)
- Scan time of ~30 min

OR

- 2 separate scans (each 3 x 10.2 mm ‘stacks’) of each bone
- Some overlap
- Scan time 2 x ~12 min
- Scans registered after acquisition for visualization purposes
In Vivo Knee Scanning

![Image of knee scan]
In Vivo Knee Scanning

Axial Tibia

Axial Femur

Sagittal

Coronal
Can we detect early signs of knee osteoarthritis *in vivo*?

Does bone microarchitecture play a role in disease onset and progression?

1Bousson 2012 Osteoporos Int, 2Johnston 2010 Skeletal Radiol
Joint Imaging Future Directions

Cartilage Volume and Thickness with Arthrogram

HR-pQCT of Elbow

Tunnel Widening after ACL Reconstruction
Acknowledgements

Dr. Steven Boyd

Group Members

J Allan RJ Klinck E Nodwell
J Bhatla A Kroker M Nour
H Buie E Kristensen J Owoc
L Burt AM Liphardt E Hildebrandt
G Campbell B Love Y Pauchard
A Cooke J MacNeil D Raymond
W Enns-Bray H Macdonald C Sandino
T Harris S Manske K Schnackenburg
D Hanley D McErlain E Szabo
B Jorgenson A Michalski Y Zhu
M Kan K Nishiyama
N Mohtadi K Archibold D Chan

http://bonelab.ucalgary.ca

Rintoul Chair in Bone and Joint Research